支持向量机(一)
支持向量机(Support Vector Machine)是一种强大的监督式学习算法。尽管目前深度学习非常流行,但这种经典的机器学习算法仍然有着非常大的研究价值,并且它在机器学习领域仍占有着一席之地。本次学习材料主要是CS229课程以及一些网上的资料。 SVM目标 为了引入SVM思想,我们来看一个二分类问题。假设我们有一组训练样本$\{(x_1,y_1
支持向量机(Support Vector Machine)是一种强大的监督式学习算法。尽管目前深度学习非常流行,但这种经典的机器学习算法仍然有着非常大的研究价值,并且它在机器学习领域仍占有着一席之地。本次学习材料主要是CS229课程以及一些网上的资料。 SVM目标 为了引入SVM思想,我们来看一个二分类问题。假设我们有一组训练样本$\{(x_1,y_1
训练数据对于机器学习来说是必不可少的,因此在每个机器学习任务之前都会有一个搜集数据的过程,这个搜集过程通常来说是枯燥且费时的。不像很多公司本身就是数据的生产者,对于我们普通学习者来说,能使用的大部分数据均来自于网络。我们可以从网页上手动获取所需的数据,复制粘贴到本地,然而这是相当麻烦的。通过python我们可以模拟浏览器对网页进行抓取,并自动筛选出所需要的数据,大大提高搜集
在建立系统方程后,便可以求解系统的状态变量随时间的函数了,当然此时系统需要满足一定条件。本文将以上一章得到的系统状态方程为基础,对一般系统求解进行推导。系统状态方程如下: \begin{eqnarray} \dot{x}(t)&=&\mathcal{A}x(t)+\mathcal{B}u(t),\ &t>0,\ x(0)=x_0\in X\tag{1}\\ y(t)&=&
作为一个苦逼的学生党,如果没有实验室或者公司支持,自己实践深度学习时经常会遇到一些困难:“自己网上搜集数据好麻烦,现成的数据集很多又都是要申请才能获得”;“破笔记本也太烂了,训练个两层CNN就要跑好几天,要达到满意的效果不知道要跑到猴年马月了”。在没有能力或者单纯不想从零开始训练模型时,迁移学习无疑是一大神器。我们可以从网上下载别人已经训练好的模型,将它们迁移到我们自己的任
我们在分析一个实际系统前往往需要将它转化为抽象的模型,再通过数学上的方法进行分析。而这其中往往涉及到一些物理化学方面的知识,因此本次学习不是分布参数系统的重点。本次学习将以导热棒为例,使我们对分布参数系统建模有一个初步的印象。 概述 不管是什么系统,对其进行建模的方法都类似:通过系统中各个物理量的相互作用来建立相应的平衡方程,再对这些方程施加一些外部条
分布参数系统控制是控制理论的一个重要分支。相对于集总参数系统,分布参数系统使用分布参数的偏微分方程对系统进行描述,并且结果比集总参数系统要精确的多,但问题求解的复杂度也要高得多,可以说是相当难的一个方向。本次学习材料主要是RSVP的上课课件以及我们Deutscher教授编著的德语材料:Zustandsregelung verteilt-parametrischer Syst
Backstepping(反步控制)是一种设计非线性系统控制器的方法。它通过对子系统的递归方便地求得能使系统稳定的输入。但大多数相关文献中并未考虑系统本身的可控性,因此首先我们假设需要控制的系统是可控的。 基本思想 Backstepping针对的是能写成如下形式的系统: \begin{cases} \dot{x}_1=x_2+f_1(x_1)\\ \
当我们学习一个新的编程语言时,输出的第一句话一定是“Hallo World”;当我们学习一个新的深度学习框架时,跑的第一个数据集一定是MNIST。这是Tensorflow官方教程的原话。MNIST是一个简单的计算机图像数据集,它由一系列大小为28×28的手写数字图像以及它们的标记组成(如下图所示),可以算是最简单的数据集之一啦。 本次学习会使用两种不同
Tensorflow是一个强大的深度学习框架,通过它可以方便地配置、训练以及评估模型。本次学习材料主要是Tensorflow官方教程、Deeplearning.ai课程以及一些网上的资料,并会加上自己的一些理解及想法。此外,本次学习针对的是机器学习在Tensorflow中的应用,不会对其理论做过多的阐述。 理解Tensorflow Tensorflow
  计算机视觉,顾名思义就是使计算机能够像人眼一样“看”东西的科学。一张图片,人可以将它抽象并快速提取其中的有效信息。而对于计算机来说,图片就是一个特殊的矩阵,需要通过一系列算法来得到相关信息。本次学习材料主要是TUM Computer Vision课堂内容以及一些相关论文。 图
  机器学习中使用最多的算法莫过于神经网络与树形算法了,而树形算法的基础就是决策树(Decision Tree)。决策树是一种基本的分类与回归方法,相对于神经网络这种黑箱,决策树容易理解,并且运行速度快。但由于其结构较为简单,故预测能力有限,无法与强监督学习模型相提并论,需要进一
  K-Means聚类算法(k-means clustering algorithm)是一种无监督学习算法。它可以通过多次迭代,将一系列无标记的数据根据它们的特征分布划分为个子集,使得子集内部元素之间的相异度尽可能低,而不同子集元素相异度尽可能高。我们称这样的子集为簇(cl
  分布参数系统的输入可以分为点输入、分布式输入和边界输入。之前的章节我们讨论的都是分布式输入,此时输入分布在定义域的某个区间。而若输入定义在边界,则称为边界输入(Randeingriff),此时系统方程会有所不同,相应的计算方法也会有差别。因此本文讨论边界输入以及它
  在控制理论中,稳定性始终是一个系统最基本的要求,之后一切的控制都要建立在系统稳定的基础上。与集总参数系统控制类似,我们可以通过增加反馈使系统达到稳定状态,并满足一定特性。分布参数系统状态方程如下: \dot{x}(t)={\cal A}x(t)\tag{1}指数稳定&emsp
  这是我的个人博客,本人本科同济毕业,目前在TUM学习Elektrotechnik und Informationstechnik, 涉猎领域主要有控制理论、机器人、机器学习等。我会将目前正在学习的知识通过博客做总结,供大家在将来学习中参考,本博客文章均为原创,禁止转载。若有疑
About MeMy name is Chenghao Wang. I hold my Bachelor of Engineer at Tongji University in China. During that time, I minored in mathematics and studied